
A Smalltalk by the Seaside

Implementing a Website the OO-Way

Bernat Romagosa i Carrasquer

Consultant: Jordi Delgado Pin

Enginyeria Tècnica en Informàtica de Gestió

Universitat Oberta de Catalunya

1

1 Thanks

Thanks to:

Jordi Delgado Pin
For introducing me to Smalltalk, Squeak and Seaside, and for
helping me along the whole process of completing this final
project.

The Smalltalk Workgroup at Citilab
For helping me whenever I had a doubt and for letting me share
my progress with them.

The people at #seaside, #squeak, #smalltalk, #css and
#latex at irc.freenode.com
For kindly answering every single doubt and question.

The people at the Seaside mail lists
For replying to all of my e-mails and helping me solve every
problem.

1

2 Abstract, Keywords and Project Area

A Smalltalk by the Seaside

by Bernat Romagosa i Carrasquer, Enginyeria Tècnica en Informàtica de
Gestió (Technical Business Computer Science), Universitat Oberta de Catalunya
(Open University of Catalonia), June 2009.

Abstract:

Modern languages and frameworks tend to depend too much on HTML,
a technology born in the early nineties. Even most advanced frameworks keep
making use of methodologies comparable to GoTo statements (href), which
are known to potentially cause trouble due to arbitrary workflow. On the other
hand, when developing web applications, we usually need to think about keep-
ing state when needed, and to do so we map it into databases, files or whatever
other support, which is a primitive way of dealing with such issues if we think
of how desktop applications are developed. With this project we mean to in-
troduce Seaside, a Smalltalk web framework that provides a solution for the
problems aforementioned.

The project comes in two different parts, the first one consists in a real web-
site developed in Seaside, while the second part means to help solve Seaside’s
lack of documentation by writing a step-by-step manual on building websites.

Keywords:

Seaside, Squeak, Smalltalk, web development, web frameworks, object ori-
ented programming.

Project Area:

Web development by means of an object-oriented framework.

2

Contents

1 Thanks 1

2 Abstract, Keywords and Project Area 2

3 Introduction 5

3.1 Justification and Context of the Final Project 5

3.2 Objectives . 6

3.3 Approach and Methodology . 6

3.4 Project Planning . 7

3.5 Final Products . 10

3.6 Description of All Chapters . 13

4 1st CHAPTER - Creating a Static Website 15

4.1 Previous Steps . 15

4.2 A Root Component And Some Empty Tabs 15

4.3 Rendering Our Root Component 17

4.4 Adding a CSS Stylesheet . 19

5 2nd CHAPTER - Sessions and Users 23

5.1 What Is a Session, What Is a User 23

5.2 Creating a User Object . 23

5.3 A Simple Database . 24

5.4 Subclassing The WASession Class 26

5.5 Adding a Sign In Component . 27

5.6 Embedding Components . 29

5.7 Adding a Login Component . 30

6 3rd CHAPTER - A (Very) Brief Introduction to Magritte 35

6.1 What Is Magritte . 35

6.2 Descriptions . 35

7 4th CHAPTER - Adding Dynamic Components 38

7.1 A Simple Personal Blog . 38

7.1.1 Posts And Comments: The Objects 38

7.1.2 The Blog View . 40

7.1.3 Database Mapping . 41

3

7.1.4 Embedding the Blog to our Root Component 41

8 Conclusions 44

Glossary 45

Bibliography and references 49

4

3 Introduction

3.1 Justification and Context of the Final Project

There are several Smalltalk implementations today, but when we look back in
time we clearly see an inflection point on the popularity of the language with
the birth of Squeak on 1996. Squeak is the newest, brightest opensource
implementation of the Smalltalk-80 environment/language developed by some
of the same people who actually worked together creating the first Smalltalk
in the late seventies.

Figure 1: A screenshot of the old Smalltalk-80 environment/language

Squeak is not a mainstream language at all, in fact the amount of users
belonging to the main mailing lists doesn’t go over 2000, but its community is
a very privileged one, counting with a few very active members who are really
well-positioned into the software development world and computer science in
general.

In the context of this new Smalltalk implementation, some programmers
began to wonder what would it be like developing websites the object-oriented
way, and this is where Seaside came out. Seaside is a powerful web framework
for Smalltalk, originally implemented for Squeak, but nowadays ported to
several other Smalltalks. The point in Seaside is to be able to code websites
as if we were coding any other piece of software and, most important, do it the
object-oriented way.

When programming desktop applications we don’t usually deal with system
calls when we want to print something or to draw windows and controls; we don’t
need -nor want- to know how the operating system rendering engine works. On
the other hand, when we are developing websites we need to speak the same
language the browser does, which slows us down and makes our main task more

5

difficult and tedious. The idea behind Seaside is exactly this one, we will not
see a single HTML statement, we won’t even know how the website is going to
look like -if we don’t want to- because design and code are fully separated from
each other.

3.2 Objectives

This work is meant to be a manual for newcomers to Seaside, its aim is to
illustrate the whole process of building a website from scratch. The final piece
of software will be a fully functional dynamic website, including sessions and
users, as well as some simple dynamic components.

We expect this manual to be specific enough but still abstract enough, that
is why we are going to name our website “Whatever” trying to stay away from
the actual contents or particular purpose of a given site.

As a result of following this manual we have been able to develop two real
websites, one of which was a direct pre-thought objective of this final project.

3.3 Approach and Methodology

The methodology followed to write this manual has been to document the learn-
ing process of developing a website as it was being built, focusing on those
aspects that took the most to understand and master.

I began by developing a test application in Squeak, meant to teach myself
the language and gain some experience before attempting to build something
bigger. The result was a fully-functional educational software called Scorer[1]1,
aimed at teaching children how to read musical scores and which has been being
used in Mestral School in Sant Feliu de Llobregat (Barcelona) by its music
teacher and his students.

Meanwhile I followed the manual An Introduction to Seaside[2]2 in or-
der to get started in Seaside itself and to learn how to develop a real project.
Nevertheless, the mentioned manual does not focus much on building common
websites, but on the specific strong points of the framework, which allow us to
program web applications as if they were desktop ones. The result of the knowl-
edge earned by reading An Introduction to Seaside[2] was the development
of a simple web application used to manage the inventory of the different de-
partments at the aforementioned Mestral School, which should begin to be used
next September.

At this point I felt I had enough experience to begin coding the final product
while documenting the whole process, and so I started writing this manual and
developing EduTech’s website.

This whole project -including every image, video, document, piece of software and whatever

other support- was developed by exclusively using free software under Debian GNU/Linux.

1Its source and binaries can be found at http://sourceforge.net/projects/scorer.
2written by the Software Architecture Group at the Hasso Plattner Institute

6

3.4 Project Planning

(a)

(b)

Figure 2: Project planning: (a) February the 26th - March the 23rd, (b) March
the 23rd - April the 17th

7

(a)

(b)

Figure 3: Project planning: (a) April the 17th - May the 12th, (b) May the
12th - June the 6th

8

Figure 4: Project planning: May the 21st - June the 15th

9

3.5 Final Products

The final products obtained by this project are detailed next:

• Scorer:[1] An educational software meant to help music students get skill-
ful at reading scores while playing. Since April 2009, it is being used at
Mestral School in Sant Feliu de Llobregat (Barcelona) by its music teacher,
with students ranging from 6 to 14 years old.

Figure 5: Scorer: screenshot of the game

• A Smalltalk by the Seaside: A manual teaching how to build a general-
purpose website from the very beginning, featuring static contents, users
and sessions, as well as dynamically editable content (a personal blog).
This tutorial also features a 35 minutes subtitled screencast[3] illustrating
the first two chapters in real-time.

Figure 6: A Smalltalk by the Seaside: screenshot of the screencast [3]

10

• Inventari Escola Mestral: A web application aimed at the management
of Mestral School’s inventory.

(a) (b)

(c)

Figure 7: Inventory management web application: (a) user administration, (b)
item input and (c) item grid and management

11

• Edutech’s Website:[4] The official website of EduTech, a teaching /
learning / development project hosted by Citilab, in Cornellà de Llo-
bregat (Barcelona). The website counts with a personal blog for each
user, a general blog (built by aggregating all user posts), different user
roles, dynamically-editable content of all sections and a user administra-
tion panel, being these two last features only available for administrators.

(a) (b)

(c) (d)

(e) (f)

Figure 8: Edutech’s official website: (a) dynamic content editable by admin-
istrators, (b) live editing of a user profile, (c) live user administration, (d)
personal blog list, (e) embedded multimedia content in an editable section and
(f) a personal blog.

12

3.6 Description of All Chapters

4 1st CHAPTER - Creating a Static Website
In this chapter we are going to introduce some basic Seaside concepts
and we will end up with a functional website featuring a couple of tabs and some
static sections.

4.1 Previous Steps
Some recommendations and concepts before beginning to build the website.

4.2 A Root Component And Some Empty Tabs
Building the main basic structure of our example website.

4.3 Rendering Our Root Component
Coding the way the root component is shown.

4.4 Adding a CSS Stylesheet
A little bit of design to make our example website look better and to
show what can be achieved by using CSS.

5 2nd CHAPTER - Sessions and Users
In this chapter we will be learning how to add a simple database capable of holding
users, along with understanding how to deal with sessions in Seaside.

5.1 What Is a Session, What Is a User
Some basic concepts related to users and sessions.

5.2 Creating a User Object
Building a class representing users with all their attributes.

5.3 A Simple Database
A simple image-based database useful for keeping all of our users.

5.4 Subclassing The WASession Class
Creating our own session class to be able to specify which user class and which
database we want our website to be using.

5.5 Adding a Sign In Component
Building a component which shows a form capable of registering new users.

5.6 Embedding Components
How to embed a complex component -such as last subsection’s sign in component-
into another component, in our case the root one.

5.7 Adding a Login Component
Creating a component to let already registered users log into our website.

6 3rd CHAPTER - A (Very) Brief Introduction to Magritte
In this chapter we will superficially introduce Magritte, a very powerful
framework capable, among many other features, of building forms automatically.

6.1 What Is Magritte
Defining what Magritte is and what it is used for.

6.2 Descriptions
Explanation of what a Description is in Magritte and how to build our own ones.

7 4th CHAPTER - Adding Dynamic Components
In this chapter we will be building a dynamic component, meaning that it can be
modified by users in real-time without the need of programming.

7.1 A Simple Personal Blog
How to build a simple personal blog component.

7.1.2 Posts And Comments: The Objects
Creating classes for posts and comments, along with all of their attributes.

13

7.1.1 The Blog View
Coding how our component will be shown to users.

7.1.4 Database Mapping
How to map the new blog component to our already existing simple database.

7.1.5 Embedding the Blog to our Root Component
Creating an access to the new blog component from a tab of our root.

14

4 1st CHAPTER - Creating a Static Website

4.1 Previous Steps

Some links are provided below for a fast and concise introduction to Smalltalk
and Squeak:

• Squeak by Example http://www.squeakbyexample.org

• A Terse Guide to Squeak http://squeak.joyful.com/LanguageNotes

Prior to following this tutorial, it is strongly recommended to read the official
introductory tutorial, which can be found at:

• A Walk on the Seaside http://www.seaside.st/documentation/tutorials

The Squeak image used in the present tutorial can be found at Seaside’s official
website, squeak download subsection (http://seaside.st/download/squeak) filed
under Developer Image.

4.2 A Root Component And Some Empty Tabs

Our first approach to the final website is just going to have a couple of tabs, a
header and some random contents.

Since we are dealing with static contents, we will not need anything else
than web components. Remember a component is an object with a visual web
representation, that is, an object that can be rendered in HTML. In Seaside,
websites are, in a way, tree-structured. To put it simple, the main component
is the one that contains the whole website, the one that is at the beginning of
this tree, hence: the root component.

Let us begin by creating our root component by opening the Class Browser,
creating a new category and naming it “Whatever”. This is the category under
which our whole website is going to be filed. Next step is creating a new subclass
of WAComponent, which is Seaside’s web component class:

WAComponent subclass: #WhateverRoot
instanceVariableNames: ’aCoupleOfTabs selectedTab’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

The two instance variables will be used as explained below:

aCoupleOfTabs Will contain an OrderedCollection with the whole tree
structure for the tab items.

selectedTab Will contain the selected item from aCoupleOfTabs. That is,
the component pointed by the tab that was last clicked.

15

For our root component to be classified as such by Seaside, we will have
to override a couple of methods in the class side of our WhateverRoot class,
namely:

WhateverRoot class >> canBeRoot
^true

WhateverRoot class >> initialize
(self registerAsApplication: ’whatever’)

WhateverRoot class >> description
^ ’A website about whatever’

The first method is for Seaside to know this is a component that is eligible
as a root component. The second method 3 registers the component as a web
application entry point programmatically, giving it the name “whatever”. In
the real world, this means our website can now be accessed at:

http://localhost:8080/Seaside/whatever

We are now done with the side class methods, let us get back to instance
and add the following methods:

WhateverRoot >> title
^ ’Whatever Website’

WhateverRoot >> updateRoot: anHtmlRoot
super updateRoot: anHtmlRoot.
anHtmlRoot title: self title

Again, the first method is obvious. The role of the second one is -in a
nutshell- to allow us to use CSS styles and JavaScript in each one of our
components. Specifically, it allows components to add items to the html head.

WhateverRoot >> states
^ Array with: self

The method states is the one that allows us to use the famous back-button
feature. Seaside, unlike other web frameworks, keeps the state of the website all
the time, meaning that view and data are both saved as a unit. This makes the
browser’s back-button work as it would in any other non-web-based application.

Implementing it is optional, but we might need it later on.

The next method calls some selectors we have not defined yet, that is why
Squeak is going to ask us what to do with them. Since they will end up being

3This method is deprecated in Seaside 2.9, instead we would use:
WhateverRoot class >> initialize

WAAdmin register: self asApplicationAt: ’whatever’

16

classes anyway, we can save some work by telling Squeak to create new classes
for each one of these selectors.

WhateverRoot >> initialize
super initialize.
aCoupleOfTabs := OrderedCollection new
add: ’A Tab’ -> (Array

with: ’A section’ -> WhateverSection new
with: ’Another section’ -> WhateverAnotherSection new);

add: ’Another Tab’ -> (Array
with: ’Yet another section’ -> WhateverYetAnotherSection new);

yourself.
selectedTab := aCoupleOfTabs first value

As the code shows, when the website is first called (created) we initialize
aCoupleOfTabs as follows:

• aCoupleOfTabs is an OrderedCollection containing the names of the
tabs we will need in our website.

• Each of those tabs is an Association between a String and an Array of
Associations.

• Each of those Associations link a String (which will be displayed later)
to a component (which we will create later on).

4.3 Rendering Our Root Component

Up to now we have already built the inner structure of our website by using
web components and referencing them from the root component. To render a
component, Seaside uses a method called renderContentOn, which we have
to define for each one of the components we want to have a view for (which is
usually all of them).

Let us first override the root’s renderContentOn method:

WhateverRoot >> renderContentOn: html
self renderHeaderOn: html.
html div id: ’tabs’; with: [self renderTabsOn: html].
self renderChildrenOn: html

Essentially, html is a rendering object -instance of WARenderCanvas-
which has a very wide range of methods for the different HTML tags and com-
bination of tags. For instance, in this method we have used the message div with
the arguments id: ’tabs’ and with: [content], which essentially corresponds
to HTML’s <DIV id=”tabs”> content < /DIV>.

As for the rest, we decided to split the rendering of the three separate parts
of our website into three rendering methods.

17

Header will be rendered by renderHeaderOn, it will contain the website title
as well as a login/logout component.

Tabs will be rendered by renderTabsOn, it will hold the different tabs that
are going to let us navigate through the contents.

Children will be rendered by renderChildrenOn. Remember Seaside’s work-
flow resembles a tree structure; a child could be defined as a branch of the
root component, which is enough of a definition for the moment. We will
take up this subject again later in more depth.

Now that we have delegated the rendering to these three methods, let us
write them:

WhateverRoot >> renderHeaderOn: html
html div id: ’header’;

with: [html heading: self title]

This message will build an HTML div identified as ’header’ and containing
an HTML heading with the title of the website (remember we have aleready
defined title previously).

WhateverRoot >> renderTabsOn: html
html unorderedList id: ’tabs’; with: [

aCoupleOfTabs do: [:each |
html listItem: [

html anchor
class: (selectedTab = each value

ifTrue: [’active’]);
callback: [selectedTab := each value];
with: each key]]]

In this method we are creating an unorderedList (an HTML unorderedList,
not a Smalltalk one) of anchors, each of which corresponds to an item of our
aCoupleOfTabs collection, and setting it to link the selected tab with the
instance variable we named after that purpose.

WhateverRoot >> renderChildrenOn: html
html div id: ’content’; with: [

selectedTab do: [:each |
html heading: each key.
html paragraph; render: each value.
]]

Our website has a main structure defined in our root component, and as we
go navigating through anchors, some parts of it keep changing. Those changing
parts are called children. So, when a tab is selected, selectedTab will become
a reference to that tab, and renderChildrenOn will print out a heading with
that tab’s name and its contents in a paragraph.

18

The next step is to fill up the renderContentOn methods for the rest of
our components. For the moment, what we write in them is totally irrelevant.

When we wrote the initialize method for our root component, we asked
Seaside to automatically build some missing classes for us, now we need to
modify them to turn them into WAComponent subclasses, as shown next:

WAComponent subclass: #WhateverSection
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

WAComponent subclass: #WhateverAnotherSection
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

WAComponent subclass: #WhateverYetAnotherSection
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

Now let us fill their respective renderContentOn methods with some ran-
dom contents:

WhateverSection >> renderContentOn: html
html paragraph: ’This is a section, it contains this text.’

WhateverAnotherSection >> renderContentOn: html
html paragraph: ’This is another section containing this paragraph...’.
html paragraph: ’...and this paragraph too.’.

WhateverYetAnotherSection >> renderContentOn: html
html paragraph: ’And this is yet another section, containing:’.
html orderedList with: [html listItem: ’The previous paragraph’;

listItem: ’This list’;
listItem: ’The three items of this list’].

4.4 Adding a CSS Stylesheet

Design of websites coded in Seaside is always done by using CSS, that is why
we should always be careful when programming to ensure every distinguishable
element has its own class or identifier set in order to help the designer’s task of
arranging them along the page.

19

CSS is read by Seaside from a method called style, which has to be coded
in the instance side of the component the CSS will be applied to. Since the
whole page is rendered from the root component, we can save ourselves some
trouble by coding it all there in a single method.

Being that CSS[5] is not the topic of this manual, we will just provide an
example one:

WhateverRoot >> style

^ ’
body{

background-color: #aeeeee;
}

#header{
border:1px solid;
border-color: #2c89a0;
height: 70px;
margin-left: 5px;
margin-right: 5px;
padding-left: 5px;
padding-right: 5px;
padding-top: 5px;
padding-bottom: 5px;
background-color: #d7eeee;

}

#content{
font-family: arial;
text-align: justify;
margin-left: 5px;
margin-right: 5px;
padding-left: 5px;
padding-right: 5px;
padding-top: 5px;
padding-bottom: 5px;
background-color: #f7eeee;
border:1px solid;
border-color: #2c89a0;

}

#tabs{
list-style-type: none;
margin-top: 2px;
margin-bottom: 10px;

}

#tabs li{
display: inline;

20

}

#tabs li a{
text-align: center;
width: 100%;
height: 25px;
color: #000;
background-color: #d7eeee;
margin: 0.5em;
padding: 0.5em;
font-size: 12px;
text-decoration: none;
border-bottom:1px solid;
border-left:1px solid;
border-right:1px solid;
border-color: #2c89a0;

}

#tabs li a:hover{
font-weight: bold;

}
’

Figure 9: Our website with a simple CSS applied

Usually we don’t want our graphic designer to be forced to deal with our
code, which could be troublesome, to solve this we can ask our style method
to read an external stylesheet file instead of hardcoding it, which can be done
as follows:

21

WhateverRoot >> style
|aCSSFile theCSSdata|
aCSSFile := FileStream fileNamed: ’style.css’.
theCSSdata := aCSSFile contentsOfEntireFile.
aCSSFile close.
^theCSSdata

Now the file style.css must be placed in the same directory as the running
image and can be substituted or modified live anytime by the usual ways (FTP
for instance) a designer is used to.

22

5 2nd CHAPTER - Sessions and Users

5.1 What Is a Session, What Is a User

A session is an object which is automatically created when a user accesses a web
application (in our case, the Whatever Website). Its aim is to handle and hold
all data relative to that particular usage and navigation through the application,
and to do so until it expires. The lifetime of a session is controlled by a method
named defaultTimeoutSeconds, time after which it is going to be garbage
collected by the system.

In other words, if we considered a web application (or website) in its entirety
as a class, a session would be just an instance.

Hence, a user is an entity which interacts with a particular session. But more
than that, a user needs some of the changes and actions performed during that
session to persist, so that they can be found again in a later session, ensuring
that the work done will be kept to be taken from a certain point on without
having to manually save it or repeat it all over.

5.2 Creating a User Object

Just like everything else in Squeak -and consequently, in Seaside-, a user is
also an object with its attributes and actions. In our case, we are going to need
a user to have the following instance variables, explained only when needed:

• firstName

• surname

• userName

• password (properly encrypted)

• email

• website

• role (used to define groups of users with different roles and
permissions within the website)

Let us define them:

Object subclass: #WhateverUser
instanceVariableNames: ’userName password firstName

surname email website role’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

23

The only methods a user needs are the accessors (setters/getters), which
Squeak can automatically generate for us. To do so, right-click on the class
name within the System Browser and choose Refactor class −→ Accessors.

As for the role, we should create a very simple class to define it, which we
can extend at our own will later on:

Object subclass: #WhateverRole
instanceVariableNames: ’roleName isSuperAdmin’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

The only method we are going to implement (besides the accessors, which
we automatically created by following the same procedure as before) is the
initialization:

WhateverRole >> initialize
super initialize.
self roleName: ’user’.
self isSuperAdmin: false.

For the moment we are not going to make use of user roles, but we leave it
prepared in case we need to assign different permissions to different groups of
users.

5.3 A Simple Database

Like we stated at the beginning of the present chapter, a user needs some data
to be persistant. Due to the complexity and extension an introduction to object-
oriented databases would cost in comparison to the actual topic we are dealing
with (sessions and users), we prefer to build a very simple image-based database,
which we could later on map to a real one.

For the moment we are going to use our simple database to store users,
which is the only data our website handles right now, but later on we will see
how to store anything else.

Let us create a new class named WhateverDatabase with the class vari-
ables Users and WriteMutex. Notice that they are class variables because all
data must be shared by all instances.

Object subclass: #WhateverDatabase
instanceVariableNames: ’’
classVariableNames: ’Users WriteMutex’
poolDictionaries: ’’
category: ’Whatever’

The first thing we are going to do is to lazy-initialize Users, remember that
we are in the class side:

24

WhateverDatabase class >> users
^ Users ifNil: [Users := OrderedCollection new]

As the code shows, we will store all of our users in an OrderedCollection,
the preferred data structure in Smalltalk. Let us define WriteMutex next:

WhateverDatabase class >> writeMutex
^ WriteMutex ifNil: [WriteMutex := Monitor new]

Again, we lazy-initialize the class variable. In this case, WriteMutex be-
comes a Monitor, which is an object that provides process synchronization;
we will use it to be able to save the image in background, as shown in the
implementation of the next two instance methods:

WhateverDatabase >> saveImage
self class writeMutex critical: [self saveImageWithoutMonitor]

WhateverDatabase >> saveImageWithoutMonitor
SmalltalkImage current saveSession.

Notice how we ask our writeMutex object (which is a Monitor) to back-
ground the process of saving the current image. From now on, anytime we
modify the database we should call saveImage in order to have the new data
kept.

Now we just need some methods to find, write and erase users from the
database:

WhateverDatabase >> addUser: aUser
self class users add: aUser.
self saveImage.
^aUser.

WhateverDatabase >> removeUser: aUser
self class users remove: aUser ifAbsent: [^aUser].
self saveImage.
^nil

Since users is an OrderedCollection, adding and removing items from it
is easy and fast. As for searches:

WhateverDatabase >> findUserByUsername: aUsername
^ self class users

detect: [:each | each userName = aUsername]
ifNone: [nil]

For each user in the database, we check if its username matches the requested
one; if it does we return it, otherwise we return nil. Notice again how an

25

OrderedCollection was the proper choice as a user container, saving us time
and trouble when dealing with its items.

We now have everything we need to finish the development of our web ap-
plication without having to worry about persistence, we could easily map this
database to a real non-image-based one, but this should not be necessary as long
as our website is not accessed by too many users at a time, since the process
taking the most time and resources is saving the image and we have already
backgrounded it, allowing the rest of the processes to run unalteredly.

5.4 Subclassing The WASession Class

Since we need to deal with particular sessions, as we hold users who in turn
hold their data, we are going to have to extend Seaside’s session class, so let
us begin by subclassing it:

WASession subclass: #WhateverSession
instanceVariableNames: ’user database’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

A session, as we pointed out before, deals with the current user (the user
instance variable) and has a database to which it writes and accesses (the
database instance variable). We need to create accessors for both variables,
which Squeak does automatically for us -as shown before- when we choose
accessors in refactor class from the class context menu.

So what else should our particular session class handle? To begin with, we
should map database to our Database when the session is initialized:

WhateverSession >> initialize
super initialize.
self database: WhateverDatabase new.

Next step is to define what logging a user in means, which is nothing but
telling our session that the current user is the given one:

WhateverSession >> login: aUser
self user: aUser.

In the same way, when a user logs out:

WhateverSession >> logout
self user: nil.

Since we are often going to need to know whether a user is logged in, we
implement an additional method which tells us:

26

WhateverSession >> isLoggedIn
^self user isNil not

The next and last method we are going to implement is just a map to a
method we previously implemented for our WhateverDatabase:

WhateverSession >> findUserByUsername: aUsername
^ self database findUserByUsername: aUsername.

Our session class is now complete and usable, but we must inform Seaside
that we want to use WhateverSession instead of WASession for our web-
site. To do so, we have to override the default session class through the web
administration panel.

5.5 Adding a Sign In Component

There should be a way for users to register to our website, which is exactly what
this component is meant to allow. We are going to name it WhateverRegister
and it is going to have two instance variables to hold the user and the “repeated
password”, which we will explain later on:

WAComponent subclass: #WhateverRegister
instanceVariableNames: ’user repeatedPassword’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

As always, we will ask Squeak to create instance variable accessors au-
tomatically for us. One easy mistake to make at this point is to assign a new
WhateverUser to our instance user variable when initializing the object, which
might seem logical but would lead to trouble given that the component is ini-
tialized only once per session.

To prevent this from happening, we will assign a new WhateverUser to
our user instance variable every time the component is rendered.

For the first time, the rendering method for this component is going to be
quite long, consisting in a form containing a table with a row for each one of
the fields we want the user to input.

27

WhateverRegister >> renderContentOn: html
self user: WhateverUser new.
html div id: ’register’;

with: [html form: [html table id: ’registerTable’; with: [html
tableRow: [html tableData:[html text: ’First Name: ’].
html tableData:[html textInput

callback: [:value | self user firstName: value].
html break]].

html
tableRow: [html tableData: [html text: ’Surname: ’].

html tableData:[html textInput
callback: [:value | self user surname: value].
html break]].

html
tableRow: [html tableData:[html text: ’E-mail: ’].

html tableData:[html textInput
callback: [:value | self user email: value].
html break]].

html
tableRow: [html tableData:[html text: ’Website: ’].

html tableData:[html textInput
callback: [:value | self user website: value].
html break]].

html break.
html

tableRow: [html tableData:[html text: ’Username: ’].
html tableData:[html textInput

callback: [:value | self user userName: value].
html break]].

html
tableRow: [html tableData:[html text: ’Password: ’].

html tableData: [html passwordInput
callback: [:value | self user

password: (self hashPassword: value)].
html break]].

html
tableRow: [html tableData:[html text: ’Password (repeat): ’].

html tableData:[html passwordInput
callback: [:value | self

repeatedPassword: (self hashPassword: value)].
html break]].
html tableRow: [

html tableData: []. html tableData:[html submitButton
callback: [self registerUser];
text: ’Sign in’]]]]]

Only a few lines from the previous piece of code demand an explanation; we
used a method called hashPassword which we haven’t implemented yet, and
another method called registerUser which we also need to implement.

28

hashPassword will use a SHA algorithm (already built-in in Squeak) to
encrypt the string and secure it properly:

WhateverRegister >> hashPassword: aString
aString ifEmpty: [^ 0];
ifNotEmpty: [^ SecureHashAlgorithm new hashMessage: aString].

registerUser is the message that will add a user to the database with all
the data given when submitting the form:

WhateverRegister >> registerUser
self user password = repeatedPassword ifTrue:[

self user role: WhateverRole new.
self session database addUser: self user.
self answer: self user.
self inform: ’User ’,self user userName,’ registered

successfully.’]
ifFalse: [

self inform: ’Passwords do not match!’]

The code above is quite self-explanatory, we first check if both passwords
match, and if they do we add the user to the database and answer it (remember
this method is called from within a callback, so we should provide an answer);
otherwise we inform the user that passwords didn’t match. Notice how we
assign a new default role to the user, which we could later on change either
programmatically or by setting up a superuser who has permissions to switch
other users roles.

One thing we could now do is to add the component we just implemented
to the collection of tabs, so that we can access it, which will require to rewrite
our root component initialization, but before doing so we need to introduce
component embedding.

5.6 Embedding Components

One of the most astonishing features of Seaside is its component reusability,
clear examples of it can be found in many projects developed on top of Seaside,
like Pier, a CMS with reusable pluggable components, or ShoreComponents,
a collection of Seaside components totally independent and embeddable.

Embedding components is an easy task but, because of Seaside’s way of
dealing with them, it might look a bit tricky at first glance. Let us clarify a
little how it is done.

First of all, we saw in the first chapter of this manual how to embed static
components (like WhateverSection or WhateverAnotherSection), but when
the components we need to embed have to deal with callbacks and have their
own state the process gets fairly complicated. In the first chapter we also talked
about children and we briefly explained how the root component deals with
them.

29

What we need to do when a child component has its own independent be-
havior is to make it persistent to the root component, that is, to add it as
an instance variable which we can refer to by its name at all times, so let us
rewrite the definition of our WhateverRoot class to include an instance of
WhateverRegister:

WAComponent subclass: #WhateverRoot
instanceVariableNames: ’aCoupleOfTabs selectedTab

registerComponent’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

We will also have to tell the root component that this component is one of its
children, which we can do by overriding WAComponent’s children method:

WhateverRoot >> children
^Array with: registerComponent.

We now will have to initialize registerComponent, assigning it to a new in-
stance of WhateverRegister when our root component is created, as well
as add it to the tabs OrderedCollection, so let us modify our root component
initialization method:

WhateverRoot >> initialize
super initialize.
registerComponent := WhateverRegister new.
aCoupleOfTabs := OrderedCollection new
add: ’A Tab’ -> (Array

with: ’A section’ -> WhateverSection new
with: ’Another section’ -> WhateverAnotherSection new);

add: ’Another Tab’ -> (Array
with: ’Yet another section’ -> WhateverYetAnotherSection new);

add: ’Sign in’ -> (Array
with: ’Sign in’ -> registerComponent);

yourself.
selectedTab := aCoupleOfTabs first value

Our registering component is now embedded to our root component, so we can
now test it on the web and try to add a new user.

5.7 Adding a Login Component

Since the login component is going to be pretty similar to the previously ex-
plained registering component, we will show here how to embed a component
into a different place of our website, in this case we chose to include our login
component at the top right corner of the page, inside its header.

As always, we begin by subclassing WAComponent :

30

Figure 10: Adding a new user through the new sign in component

WAComponent subclass: #WhateverLogin
instanceVariableNames: ’userName password’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

Next step is to automatically build accessors for both instance variables, as
shown in previous chapters. Let us write our rendering method:

WhateverLogin >> renderContentOn: html
self session isLoggedIn

ifTrue: [html text: ’Hi ’ , self session user firstName , ’.’.
html form: [html cancelButton class: ’btn’;

callback: [self logout]; text: ’Logout’]]
ifFalse: [html

form: [html textInput on: #userName of: self;
value: ’’.

html passwordInput
callback: [:value | self

password: (self hashPassword: value)];
value: ’’.

html submitButton class: ’btn’;
callback: [self validateLogin]; text: ’Login’]]

First thing we do when rendering this component is check whether the user
is logged in. When a user is logged in, the component just greets him and shows
a logout button, which calls the not-yet-implemented logout method. If there
is no user logged in yet, the component shows a form with two inputs, one for
the username, another one for the password, along with a login button which
calls another not-yet-implemented method called validateLogin.

The btn class here is set for design issues, so that our graphic designer can
refer to the login component buttons in a different way when writing the CSS
stylesheet.

Notice that we use hashPassword again, so we will have to write it here
too. In order to follow Smalltalk’s best practices, we should find a way to

31

reuse it instead of having two methods doing exactly the same in two different
classes. The way to do that would be to subclass both components (that is,
WhateverRegister and WhateverLogin) from a component implementing
this method. We leave this improvement up to the reader in order to not
complicate the main subject here explained.

WhateverLogin >> hashPassword: aString
aString ifEmpty: [^ 0];
ifNotEmpty: [^ SecureHashAlgorithm new hashMessage: aString].

As for the two methods we haven’t yet implemented:

WhateverLogin >> logout
self session logout.
self inform: ’Goodbye!’.

WhateverLogin >> validateLogin
|user|
user := self session findUserByUsername: self userName.

(user notNil and: [user password = self password])
ifTrue: [self session login: user. self answer: user]
ifFalse: [self loginFailed]

The first method is self-explanatory, as for the second one, we try to find
the user by its username in the database, if we are successful we login that user
and answer it, while if we are unable to find it we call a method which we will
next implement in order to deal with failed login attempts:

WhateverLogin >> loginFailed
self inform: ’Login failed!’

By following the same procedure shown in previous chapter, we are going to
embed this component, but this time into the header of the website:

WAComponent subclass: #WhateverRoot
instanceVariableNames: ’aCoupleOfTabs selectedTab registerComponent

loginComponent’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

WhateverRoot >> children
^Array with: registerComponent with: loginComponent.

32

WhateverRoot >> initialize
super initialize.
loginComponent := WhateverLogin new.
registerComponent := WhateverRegister new.
aCoupleOfTabs := OrderedCollection new
add: ’A Tab’ -> (Array

with: ’A section’ -> WhateverSection new
with: ’Another section’ -> WhateverAnotherSection new);

add: ’Another Tab’ -> (Array
with: ’Yet another section’ -> WhateverYetAnotherSection new);

add: ’Sign in’ -> (Array
with: ’Sign in’ -> registerComponent);

yourself.
selectedTab := aCoupleOfTabs first value

So, in the header rendering method:

WhateverRoot >> renderHeaderOn: html
html div id: ’header’;

with: [
html heading: self title.
html div id: ’loginBox’;

with: [html render: loginComponent]
]

Now it is our graphic designer’s task to give the component the right size
and style, for the moment, we will add the next CSS code to our style4:

#loginBox{
position:absolute;
right:15px;
top:10px;
margin: 5px;
padding:3px 5px 5px 5px;
background-color: #d7eef4;
border:1px solid;
border-color: #2c89a0;
width: 132px;
font-size: 10px;

}

4Located at the instance side of WhateverRoot or in an external file, depending on the
chosen implementation method

33

input.btn{
margin-top: 2px;
color: #2c89a0;
background-color: #d7eef4;
border:1px solid;
border-color: #2c89a0;
float: right;

}

input {
font-size: 10px;
margin-top: 2px;
color: #2c89a0;
background-color: #d7eef4;
border:1px solid;

}

Figure 11: The new login component embedded into the website’s header

34

6 3rd CHAPTER - A (Very) Brief Introduction
to Magritte

6.1 What Is Magritte

Magritte is described in a wide variety of terms, but for the use we are going
to make of it here, meta-component might be the one that fits best. Magritte
is actually a very complex framework, as his author points:

Most applications consist of a big number of model- or so called
domain-objects. Building different views, editors, and reports; query-
ing, validating and storing those objects is very repetitive and error-
prone, if an object changes its shape frequently.

Magritte is a fully dynamic meta-description framework that
helps to solve those problems, while keeping the full power to the
programmer in all aspects. Moreover since Magritte is described in
itself, you can let your users modify the meta-world and add their
own fields and forms without writing a single line of code.5

For us, Magritte will be a way of dealing with web forms without having to
manually build them like we did previously on chapter Sessions And Users,
but instead describing the objects we want to be filled with information and
letting Magritte create the web component for us. This chapter should serve as
a quick introduction to its usage and basic features, for a detailed documentation
it is advised to read Lukas Renggli’s tutorial. 6

We will be using Magritte to build some simple forms from now on, which
is why it is important to briefly introduce it now. Being Magritte abstract in
itself, we are going to use an example of a small bookstore when showing code,
since abstracting an abstraction would be too far from illustrative.

This section is based on a post by Ramon Leon 7

6.2 Descriptions

A description is a statement that represents something in words, and that is
exactly what a description does in Magritte.

The first class we need to familiarize with is MADescription, we will always
describe our objects by using subclasses of MADescription, but not in the
usual Smalltalk-like way of overriding them, but by creating instances of them
in our domain objects class side (in general). By doing so, Magritte will have
a way to build forms out of these descriptions and link each one of their fields
to the corresponding methods of the described objects. Note that, being this
a web development tutorial, we are only going to talk about Magritte’s web
form building features, but it should be pointed out that this framework can

5Lukas Renggli, http://www.lukas-renggli.ch/smalltalk/magritte
6Lukas Renggli, http://www.lukas-renggli.ch/smalltalk/magritte/tutorial.pdf
7Using Magritte with Seaside, http://onsmalltalk.com/using-magritte-with-seaside

35

also deal with morphs by default and was built as open as can be in order to
make it suitable for whatever other purposes.

For instance, if we had a class named Book with the methods addTitle,
addBarcode, and addPurchaseDate we could create the following descrip-
tions:

Book class >> descriptionAddTitle
^ (MAStringDescription new)

selectorAccessor: #addTitle;
label: ’Title’;
priority: 1000;
yourself

Book class >> descriptionAddBarcode
^ (MANumberDescription new)

selectorAccessor: #addBarcode;
label: ’Bar Code’;
priority: 900;
yourself

Book class >> descriptionAddPurchaseDate
^ (MADateDescription new)

selectorAccessor: #addPurchaseDate;
label: ’Purchase Date’;
priority: 800;
yourself

The description methods must return an instance of a MADescription
subclass (which one, as shown above, depends on the data types). We should
also send some messages to that instance in order to set up the description,
namely:

selectorAccessor is, as its name points out, the selector of the accessor method
we want to link with this description.

label is the label that will be shown in the form, but abstractly speaking would
be the name of the described attribute.

priority indicates the order in which the attribute will be requested in the
resulting form. The abstraction here would be immediate: the priority of
a descriptor represents the order in which we would preferably enumerate
it as an element of the object it belongs to.

Once we have our descriptions, we can ask Magritte to build a form in two
different ways depending on our needs. If we want to build a form requesting
every field described, we can just do:

Book >> buildComponentFor: aBook
^aBook asComponent addValidatedForm

36

We notice one particularly odd thing about the code above, which is the
addValidatedForm message. This message wraps the form into a decoration;
this leads us to introduce two important concepts in Magritte and Seaside in
general:

Memento: A memento can be described as a temporary copy of an object,
which will not be applied to the actual object until we explicitly ask for
it.

Decoration: A decoration is a way to add functionality by assembly. In
Magritte, form decorations act as intermediaries between the form, the
memento and the actual object.

In the code above, addValidatedForm is a particular decoration that will
validate the information before sending it to the object via its accessors. This
decoration deals with a memento of the object the form will be applied to.
When the user fills in the information, the form decoration validates it against
the memento, and if everything works out, changes are applied to the actual
object.

Since most of the time we won’t need every one of our described fields to be
shown in the form, we will more often be using a composite representation:

buildComponentFor: aBook
^((Book descriptionAddBarcode,

Book descriptionAddPurchaseDate) asComponent on: aBook)
addValidatedForm;
yourself

Magritte, as pointed out before, is a very complex framework which takes
long time and practice to master, which is why we have only introduced the
aspects we are going to use in this manual. Every single form used in this
manual could be defined and rendered by using Magritte, though it would
complicate it way too much for the objectives we intend to accomplish, which is
why we will keep on coding some forms manually when it comes to specific ways
of asking user input or different validating procedures than the ones coming with
Magritte by default.

37

7 4th CHAPTER - Adding Dynamic Compo-
nents

Dynamic components are those holding contents that can be modified by inter-
acting with a website through a browser. These modifications must be persis-
tent, which is why we will be both building a dynamic component and showing
how to map it to our already existing database.

The dynamic component we are going to introduce is a simple blog based
on a screencast by Ramon Leon [8].

7.1 A Simple Personal Blog

A blog is essentially a collection of posts ordered by date of entry. Each of
those posts belong to a user and should ideally have a date and a collection of
comments also ordered by date of entry.

From this point of view, it seems pretty reasonable to understand a blog
as an OrderedCollection of posts, being a post an object with its title, text
content, user, date and an OrderedCollection of comments. In its turn, a
comment will be an object with some attributes, such as a title, the name of
the person who wrote it and, of course, its text content.

Note that, by following a very similar procedure to the one we introduce
here, we could very easily build a fully-editable website taking in account user
roles to decide which sections can be edited by each group of users.

Let us begin by creating the two objects we have just described.

7.1.1 Posts And Comments: The Objects

As we stated before, a post is an object holding a title, a content, a user, a date
and some comments:

Object subclass: #WhateverPost
instanceVariableNames: ’title content user date comments’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

And the only methods it needs, as it usually happens with model objects,
are the accessors.

In this case, though, we are going to lazy-initialize comments to be an Or-
deredCollection:

WhateverPost >> comments
^comments ifNil: [comments := OrderedCollection new]

Since we already introduced Magritte, we can now save lots of time by
implementing descriptors for WhateverPost in its class side:

38

WhateverPost class >> descriptionTitle
^(MAStringDescription selector: #title
label: ’Title: ’ priority: 10)

beRequired;
yourself.

WhateverPost class >> descriptionContent
^(MAMemoDescription selector: #content
label: ’Content: ’ priority: 20)

beRequired;
yourself.

user and date are going to be set automatically by us when the form is
submitted, so we can forget about describing them.

As for comments, the procedure is pretty much the same:

Object subclass: #WhateverComment
instanceVariableNames: ’commenterName title comment’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

Just like before, we automatically create accessors for all instance variables
and turn to the class side to define our descriptors:

WhateverComment >> descriptionCommenterName
^(MAStringDescription selector: #commenterName
label: ’Name: ’ priority: 10)

beRequired;
yourself.

WhateverComment >> descriptionTitle
^(MAStringDescription selector: #title
label: ’Title: ’ priority: 20)

beRequired;
yourself.

WhateverComment >> descriptionComment
^(MAMemoDescription selector: #comment
label: ’Comment: ’ priority: 30)

beRequired;
yourself.

And that should be everything we need to begin building the blog view.

39

7.1.2 The Blog View

The blog view will have to show a list of posts with their respective comments,
and that list should be reversed so that newer posts come first.

Let us begin by creating a new component:

WAComponent subclass: #WhateverBlog
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

Next step is to write WhateverBlog’s rendering method:

WhateverBlog >> renderContentOn: html
self session database class blogRepository

reverseDo: [:eachPost | html
div: [html heading: eachPost title level: 2;

paragraph: (eachPost user firstName asString, ’ ’,
eachPost user surname asString);

paragraph: eachPost date;
text: eachPost content.

html
div: [html strong: ’Comments’.
eachPost comments

do: [:eachComment | html heading: eachComment
title level: 4;

paragraph: eachComment commenterName asString;
text: eachComment comment]].

html anchor callback: [self addCommentTo: eachPost];
with: ’Add Comment’

]].
html anchor on: #newPost of: self

Notice we sent a message that our database doesn’t understand yet (blogRepository);
this will be covered in the next subsection. For the moment let us focus in the
methods lacking to the current class, WhateverBlog.

WhateverBlog >> newPost
| aPost |
aPost := self call: ((WhateverPost new asComponent)

addValidatedForm; yourself).
aPost ifNotNil:
[

aPost
date: Date today;
user: self session user.

self session database class blogRepository add: aPost.
self session database saveImage]

40

This method makes use of Magritte’s advantadges, notice how we auto-
matically build a form that will request the user’s input, validate it and store
it in the corresponding object (remember how tedious was to manually build
input forms for components as WhateverRegister or WhateverLogin).

As for the last lacking method:

WhateverBlog >> addCommentTo: aPost
| aComment |
aComment := self call: (WhateverComment new asComponent

addValidatedForm; yourself).
aComment

ifNotNil:
[aPost comments add: aComment.
self session database saveImage]

Both methods look very short, similar and easy to understand thanks to
using Magritte, however, if we wanted to do something more complicated, like
embedding a rich text editor (like the one ShoreComponents provides) into
our blog post editor, Magritte’s way to do it would become fairly difficult.

7.1.3 Database Mapping

First thing we need to do is add a new class variable to our database, which will
hold the whole collection of posts in the same way it already does with users:

Object subclass: #WhateverDatabase
instanceVariableNames: ’’
classVariableNames: ’BlogRepository Users WriteMutex’
poolDictionaries: ’’
category: ’Whatever’

Actually, the way to deal with blog entries will be pretty much the same
we used to deal with users, the next method in the class side looks exactly the
same as the one we wrote for the Users class variable:

WhateverDatabase class >> blogRepository
^ BlogRepository ifNil:

[BlogRepository := OrderedCollection new].

While, usually, mapping data to a database can become a pretty complex
task, in our case this is all we are going to need. Now we only need to embed
our new blog component to our root.

7.1.4 Embedding the Blog to our Root Component

To embed this component we are going to follow exactly the same procedure as
before, when we embedded both register and login components.

First of all, we add an instance variable to our root:

41

WAComponent subclass: #WhateverRoot
instanceVariableNames: ’aCoupleOfTabs selectedTab

registerComponent loginComponent blogComponent’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Whatever’

We add it to its children:

WhateverRoot >> children
^Array with: registerComponent with: loginComponent

with: blogComponent.

And in the initialization method, we assign it to a new #WhateverBlog
and add a tab for it:

WhateverRoot >> initialize
super initialize.

loginComponent := WhateverLogin new.
registerComponent := WhateverRegister new.
blogComponent := WhateverBlog new.

aCoupleOfTabs := OrderedCollection new
add: ’A Tab’ -> (Array

with: ’A section’ -> WhateverSection new
with: ’Another section’ -> WhateverAnotherSection new);

add: ’Another Tab’ -> (Array
with: ’Yet another section’ -> WhateverYetAnotherSection new);

add: ’Sign in’ -> (Array
with: ’Sign in’ -> registerComponent);

add: ’Blog’ -> (Array
with: ’Blog entries’ -> blogComponent);

yourself.
selectedTab := aCoupleOfTabs first value

Our blog is now ready and working.

We introduced the main concepts and procedures needed to get started in
Seaside, from this point on we can already build anything we want from scratch,
and since reutilization of components is -as we have seen- a very simple task, we
can profit from the work done by others to grow our website or web application
as big and complex as we want.

42

Figure 12: A screenshot of the simple blog working

43

8 Conclusions

Developing in Seaside, even when just starting to learn the language and the
framework, has proved to be highly productive and consistent with the object-
oriented programming paradigm. Once basics are learnt, scaling becomes fast
and easy and can be substantially boosted up by reusing ready-made compo-
nents and libraries.

Seaside proves that web development can also be pure object oriented, and
-as opposed to what a first glance to the framework and its methodology could
infer- performance, speed and scalability are not sacrificed for the sake of pro-
gramming comfort.

Seaside is usually introduced as a way to build web applications, and this is
what most manuals and tutorials teach. The present project intended to check
whether Seaside was also a valid approach for building common websites -such
as Edutech’s-, which showed up true.

However, the learning curve for this framework can be fairly rough for new-
comers. Even though during the last years the lack of documentation is being
gradually solved, there is still a big gap to cover. One of the objectives of this
project was to help making up for this problem, and I think and hope that the
resulting manual will certainly be of great use to beginners and people interested
in a different way of developing websites.

44

Glossary

accessor Creating accessors automatically, 23
aCoupleOfTabs WhateverRoot instance variable assignation

and explanation, 17
aCoupleOfTabs WhateverRoot instance variable, 15
addCommentTo WhateverBlog method, 41
addUser WhateverDatabase method, 25

background Backgrounding the procedure of saving a
Squeak image, 25

blog Term definition, 38
blogComponent WhateverRoot instance variable, 41
BlogRepository WhateverDatabase class variable, 41
blogRepository WhateverDatabase class method, 41
buildComponentFor Magritte method, 36, 37

canBeRoot WhateverRoot method, 15
children Embedding a component into another compo-

nent, 29
children Rendering our root component’s children, 18
children WhateverRoot method, 29, 32, 42
comment WhateverComment instance variable, 39
commenterName WhateverComment instance variable, 39
comments WhateverPost instance variable, 38
comments WhateverPost method, 38
content WhateverPost instance variable, 38
CSS An example of a simple Cascading Style Sheet

for our website, 20
CSS How to read an external CSS file, 21
CSS, login box An example CSS for our login box, 33

database Creating an image-based database, 24
database Methods for saving data, 25
database WhateverSession instance variable, 26
date WhateverPost instance variable, 38
decoration Magritte concept, 36
description Magritte concept, 35
description WhateverRoot method, 15
descriptionComment WhateverComment class method, 39
descriptionCommenterName WhateverComment class method, 39
descriptionContent WhateverPost class method, 38
descriptionTitle WhateverComment class method, 39
descriptionTitle WhateverPost class method, 38
dynamic component Term definition, 38

Edutech A teaching/learning/development project
hosted by Citilab, 12, 15

email WhateverUser instance variable, 23

45

embedding Embedding a component into another compo-
nent, 29

encryption Encrypting a password, 28

findUserByUsername WhateverDatabase method, 25
findUserByUsername WhateverSession method, 26
firstName WhateverUser instance variable, 23
form Rendering an input form, 27

getter Creating accessors automatically, 23

hashPassword WhateverLogin method, 31
hashPassword WhateverRegister method, 28
header Rendering a header for our website, 18

image, Squeak Squeak image used in the development of the
example website in this tutorial, 15

initialize WhateverRole method, 24
initialize WhateverRoot method, 16, 30, 32, 42
initialize WhateverSession method, 26
Inventari Escola Mestral Inventory Management Web Application, 11
isLoggedIn WhateverSession method, 26
isSuperAdmin WhateverRole instance variable, 23

label MADescription method, Magritte, 36
log in Building a form to let users log in, 31
log in Validating a user attempt to log in, 32
log out Building a form to let users log in, 31
login WhateverSession method, 26
loginComponent Embedding the login component into our web-

site’s header, 33
loginComponent WhateverRoot instance variable, 32
loginFailed WhateverLogin method, 32
logout WhateverLogin method, 32
logout WhateverSession method, 26

Magritte Definition of Magritte, 35
memento Magritte concept, 36

newPost WhateverBlog method, 40

password WhateverLogin instance variable, 31
password WhateverUser instance variable, 23
priority MADescription method, Magritte, 36

refactoring Creating accessors automatically, 23
register Rendering a form for registering new users, 27
registerComponent WhateverRoot instance variable, 29
registerUser WhateverRegister method, 28

46

removeUser WhateverDatabase method, 25
renderChildrenOn WhateverRoot method, 18
renderContentOn WhateverAnotherSection method, 19
renderContentOn WhateverBlog method, 40
renderContentOn WhateverLogin method, 31
renderContentOn WhateverRegister method, 27
renderContentOn WhateverRoot method, 17
renderContentOn WhateverSection method, 19
renderContentOn WhateverYetAnotherSection method, 19
renderHeaderOn WhateverRoot method, 18, 33
renderTabsOn WhateverRoot method, 18
repeatedPassword WhateverRegister instance variable, 27
role WhateverUser instance variable, 23
roleName WhateverRole instance variable, 23
Root component Definition of the root component of a Seaside

website, 15

save WhateverDatabase methods for saving data, 25
saveImage WhateverDatabase method, 25
saveImageWithoutMonitor WhateverDatabase method, 25
Scorer Musical score learing assistant for children, 10
Seaside A Walk on the Seaside, the short introductory

official tutorial, 15
selectedTab WhateverRoot instance variable assignation, 18
selectedTab WhateverRoot instance variable, 15
selectorAccessor MADescription method, Magritte, 36
setter Creating accessors automatically, 23
Smalltalk The language/environment, 5
Squeak Some tutorials, 15
Squeak The language/environment, 5
states WhateverRoot method, 16
style WhateverRoot method returning a CSS by

reading it from an external file, 21
style WhateverRoot method returning a hardcoded

CSS, 20
style WhateverRoot method, 33
surname WhateverUser instance variable, 23

tabs Initialization of tabs in WhateverRoot, 17
tabs Rendering some tabs for our website, 18
title WhateverComment instance variable, 39
title WhateverPost instance variable, 38
title WhateverRoot method, 16

updateRoot WhateverRoot method, 16
user WhateverPost instance variable, 38
user WhateverRegister instance variable, 27
user WhateverSession instance variable, 26
userName WhateverLogin instance variable, 31

47

userName WhateverUser instance variable, 23
Users WhateverDatabase class variable, 24
users WhateverDatabase class method, 24

validateLogin WhateverLogin method, 32

WAComponent The Seaside class for web components, 15
website WhateverUser instance variable, 23
WhateverAnotherSection A static component, 18
WhateverBlog A component displaying the blog view, 40
WhateverComment Class definition, 39
WhateverDatabase An object working as an image-based database,

24
WhateverDatabase Assignation of a new database to a session, 26
WhateverLogin A component to allow registered users to log in,

31
WhateverPost Class definition, 38
WhateverRegister A component for registering new users, 27
WhateverRole An object representing a user role, 23
WhateverSection A static component, 18
WhateverSession An object representing a session, 26
WhateverUser An object representing a user, 23
WhateverYetAnotherSection A static component, 18
WriteMutex WhateverDatabase class variable, 24
writeMutex WhateverDatabase class method, 25

48

References

[1] Scorer
Romagosa Carrasquer, Bernat
http://sourceforge.net/projects/scorer

[2] An introduction to Seaside
Michael Perscheid, David Tibbe, Martin Beck, Stefan Berger, Peter Osburg,
Jeff Eastman, Michael Haupt and Robert Hirschfeld
ISBN 978-3-00-023645-7
2008
http://www.hpi.uni-potsdam.de/hirschfeld/seaside/tutorial

[3] A Smalltalk by the Seaside - Screencast
Romagosa Carrasquer, Bernat
http://www.vimeo.com/5130619

[4] Edutech
Romagosa Carrasquer, Bernat
http://mestralserver.no-ip.org:8080/seaside/edutech (temporary URL)

[5] CSS by Example
Steve Callihan
ISBN 0-7897-2617-3
2004

[6] Personal Blog
Renggli, Lukas
http://www.lukas-renggli.ch/smalltalk/magritte

[7] Using Magritte With Seaside
Leon, Ramon
September the 10th, 2007
http://onsmalltalk.com/using-magritte-with-seaside

[8] How to Build a Blog in 15 Minutes with Seaside
Leon, Ramon
November the 20th, 2006
http://onsmalltalk.com/screencast-how-to-build-a-blog-in-15-minutes-with-
seaside

49

